Math, asked by jfj5fmitriushmi, 1 year ago

If x= -1/2 is a solution of the quadratic equation 3x2+2kx+3=0, find the value of k.

Answers

Answered by pinquancaro
72

Answer:

The value of k is k=\frac{15}{4}  or  k=3.75

Step-by-step explanation:

Given : If x=-\frac{1}{2} is a solution of the quadratic equation 3x^2+2kx+3=0.

To find : The value of k ?

Solution :

To get the value of k substitute the value of x in the equation,

Equation 3x^2+2kx+3=0

Put x=-\frac{1}{2},

3(-\frac{1}{2})^2+2k(-\frac{1}{2})+3=0

3(\frac{1}{4})-k+3=0

\frac{3}{4}-k+3=0

k=\frac{3}{4}+3

k=\frac{3+12}{4}

k=\frac{15}{4}

k=3.75

Therefore, The value of k is k=\frac{15}{4}  or  k=3.75

Answered by mysticd
31

Answer:

 Value\:of \: k = \frac{15}{4}

Step-by-step explanation:

Given \:x=\frac{-1}{2}\: is \:a \\solution \: of \:the\: quadratic\: equation\\3x^{2}+2kx+3=0

 Substitute \:x=\frac{-1}{2}\:in \:the \\ equation ,\:we \:get

\implies 3\left(\frac{-1}{2}\right)^{2}+2k\left(\frac{-1}{2}\right)+3=0

\implies 3\left(\frac{1}{4}\right)-k+3=0

\implies \frac{3}{4}+3-k=0

\implies \frac{3+12}{4}-k =0

\implies \frac{15}{4}-k=0

\implies -k = -\frac{15}{4}

\implies k = \frac{15}{4}

Therefore,

 Value\:of \: k = \frac{15}{4}

•••♪

Similar questions
Math, 8 months ago