Math, asked by Nikita169, 8 months ago

If (x+1)^2/x^3+x = A/x + Bx+C/x^2+1, then sin^-1 A + tan^-1 B +sec^-1 C =

1) pi/2
2) pi/6
3) 0
4) 5pi/6

Attachments:

Answers

Answered by senboni123456
0

Answer:

4) 5π/6

Step-by-step explanation:

We have,

 \frac{ {(x + 1)}^{2} }{ {x}^{3}  + x} =  \frac{a}{x}   +  \frac{bx + c}{ {x}^{2} + 1 }

 =  >  \frac{ {x}^{2}  + 2x + 1}{x( {x}^{2} + 1) }  =  \frac{a( {x}^{2}  + 1) + x(bx + c)}{x( {x}^{2}  + 1)}

 =  >  {x}^{2}  + 2x + 1 = (a + b) {x}^{2}  + cx + a

On comparing both sides,

a = 1, c = 2, b = 0

so,

 \sin^{ - 1} (a)  +  \tan ^{ - 1} (b)  +  \sec^{ - 1} (c)  =  \sin^{ - 1} (1)  +  \tan ^{ - 1} (0)  +  \sec^{ - 1} (2)

 =  \frac{\pi}{2}   + 0 +  \frac{\pi}{3}

 =  >  \frac{5\pi}{6}

Similar questions