Math, asked by RANITBISWAS1, 3 months ago

if x=1/3-√8 and y=1/3+√8, the value of (x+y)² is (a)32 (b)35 (c)36 (d)38​

Answers

Answered by Anonymous
7

Given :-

x =  \dfrac{1}{3 -  \sqrt{8} }

y =  \dfrac{1}{3 +  \sqrt{8} }

To find :-

(x + y) {}^{2}

Solution :-

First we find (x + y) value

x + y =  \dfrac{1}{3 -  \sqrt{8} }  +  \dfrac{1}{3 +  \sqrt{8} }

Take LCM to the denominator

 \dfrac{3 +  \sqrt{8}  + 3 -  \sqrt{8} }{(3 +  \sqrt{8} )(3 -  \sqrt{8}) }

 \dfrac{6}{(3) {}^{2}  - ( \sqrt{8}) {}^{2}  }

Denominator is in form of (a+b)(a-b) = a²-b²

 \dfrac{6}{9 - 8}

 \dfrac{6}{1}

so \: (x + y) = 6

Now finding (x+y)²

(x + y)² = (6)²

(x + y)² = 36 (option-c)

__________________

Know more some algebraic identities:-

(a+ b)² = a² + b² + 2ab

( a - b )² = a² + b² - 2ab

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

Similar questions