if x=1/4-x, find : x+1/x
Answers
Answer:
x + 1/x = 4
x³ + 1/x³ = 52
x⁶ + 1/x⁶ = 2702
Step-by-step explanation:
x = 1/(4 -x)
=> x (4 -x) = 1
=> 4x - x² = 1
=> x² - 4x + 1 = 0
=> x² + 1 = 4x
Dividing by x both sides
=> x + 1/x = 4
or solving Quadratic equation
x² - 4x + 1 = 0
=> x = (4 ± √16 - 4 )/2
= (4 ± 2√3)/2
= 2 ± √3
case 1 x = 2 + √3
x + 1/x
= 2 + √3 + 1/(2 + √3)
Multiplying & dividing last term by 2 - √3
= 2 + √3 + (2 - √3)/(4 -3)
= 2 + √3 + 2 - √3
= 4
Case 2 x = 2 - √3
x + 1/x
= 2 - √3 + 1/(2 - √3)
Multiplying & dividing last term by 2 + √3
= 2 - √3 + (2 + √3)/(4 -3)
= 2 - √3 + 2 + √3
= 4
x + 1/x = 4
x³ + 1/x³ = (x + 1/x)³ - 3x(1/x)(x + 1/x)
= 4³ - 3 * 4
= 64 - 12
= 52
x²+ 1/x² = (x + 1/x)² - 2x(1/x)
=> x²+ 1/x² = 4² - 2
=> x²+ 1/x² = 14
Cubing both sides
x⁶ + 1/x⁶ + 3x²(1/x²)(x²+ 1/x²) = 14³
=> x⁶ + 1/x⁶ + 3(14) = 2744
=> x⁶ + 1/x⁶ = 2702
Answer:
4
Step-by-step explanation:
i.x=1/4-x
or 4x-x^2=1
or 4-x=1/x (diving both sides by x)
or 4=x+1/x
ii. (x+1/x)^3=x^3+1/x^3+3(x+1/x)
or 64= x^3+1/x^3+12
x^3+1/x^3= 52
iii. (x^3+1/x^3)^2=x^6+1/x^6+2
x^6+1/x^6=2702