If x=1/a + b
and y = 1/a-b
find the value of
х/y+ xy + x + y.
a) a2+ b2 - 2ab + 2a +1
a2 - b2
b) a2 + b² + 2ab – 2a +1
a2- b2
c) a2+ b2 - 2ab + 2a - 1
a2- b2
d) a2- b2- 2ab + 2a + 1
a2 - b2
Answers
Answered by
5
Given :
- x = 1/a+b
- y = 1/a-b
To find
- x/y + xy + x + y
Solution :
- x/y
→ 1/a+b/1/a-b
→ 1/a+b × a-b
→ a-b/a+b
- xy
→ 1/a+b × 1/a-b
→ 1/a² - b²
- x + y
→ 1/a+b + 1/a - b
→ a - b + a + b/a² - b²
→ 2a/a² - b²
- Put the value of i, ii and iii
→ x/y + xy + x + y
→ a-b/a+b + 1/a² - b² + 2a/a² - b²
→ (a - b)(a-b) + 1 + 2a/a² - b²
→ (a - b)² + 1 + 2a/a² - b²
→ a² + b² - 2ab + 1 + 2a/a² - b²
- Option (a) is the correct one
Similar questions