Math, asked by saluja2001, 1 year ago

* if x+1 and x+2 are the factors of ax3 + bx2 +17 +10 find a and b
* if x2 - 3x + 2 is a factor of x3 - x2 - px +q ,find pand q
* find the value of a and b so that the x3 -ax2 - 13x + b has x-1 and x+3 as factor

Answers

Answered by kvnmurty
7
1)
     x+1 and x+2 are factors of  P(x) =  a x³ +  b x² + 17 x + 10
     P(-1) = - a + b - 17 + 10 = 0            => a + b = 7
     P(-2) = -8 a + 4 b - 34 + 10 = 0        =>  b - 2 a = 6
           subtract one from the second,  a = 1/3      b = 20/3
2) 
  x² - 3 x + 2 = (x - 2) (x -1)  are factors of  P(x) = x³ - x² - p x + q
     so P(2) = 0 = 8 - 4 - 2 p + q    =>  2p - q = 4
       P(1) =    0    =  1 - 1 - p + q      =>  p = q
         solving them,  q = p = 4
=====================
3
 P(x) =   x³ - a x² - 13 x  + b    has  x - 1 and x+3  as the factors.
        P(1) = 0  = 1 - a - 13 + b      =>    - a + b = 12
         P(-3) = 0  =  -27 - 9 a + 39 + b      =>  b - 9 a = -12

             solving them,  we get  a = a = 3    b = 15


Similar questions