if x+1 and x-2 are the factors of ax3+x2-2x+b find the values of a and b
Answers
Answered by
2
Answer:
Step-by-step explanation:
let p(x)=ax³+x²-2x+b
(x+1) and (x-2) are the factors of p(x)
so, 2 and -1 are the zeroes
p(-1)=a(-1)³+(-1)²-2*-1+b
=-a+1+2+b
=-a+3+b
p(2)=a(2)³+(2)²-2*2+b
=8a+4-4+b
=8a+b
p(-1)=0
⇒-a+3+b=0
⇒b=a-3
p(2)=0
⇒8a+b=0
⇒8a+(a-3)=0 (as b=a-3)
⇒8a+a-3=0
⇒9a=3
⇒a=1/3
now
b=a-3
=1/3-3
=(1-9)/3
=-8/3
anvesh744:
thanks mate
Answered by
2
if,x=-1
then,p(x)=ax^3+x^2-2x+b
p(-1)=a(-1)^3+(-1)2-2(-1)+b
=-a+1+2+b=0
-a+b=-3
b=-3+a.......(1)
if x=2,
p(2)=a(2)^3+(2)2-2(2)+b=0
=8a+4-4+b=0
8a+b=0......(2)
the 1st value of b is substitute in 2nd
then,8a+(-3+a)=0
8a-3+a=0
9a=3
a=3/9
a=1/3
then,b=-3+(1/3)
b=-8/3
then,p(x)=ax^3+x^2-2x+b
p(-1)=a(-1)^3+(-1)2-2(-1)+b
=-a+1+2+b=0
-a+b=-3
b=-3+a.......(1)
if x=2,
p(2)=a(2)^3+(2)2-2(2)+b=0
=8a+4-4+b=0
8a+b=0......(2)
the 1st value of b is substitute in 2nd
then,8a+(-3+a)=0
8a-3+a=0
9a=3
a=3/9
a=1/3
then,b=-3+(1/3)
b=-8/3
Similar questions