If x =-1+i then find x3-6x2+2x-1
Answers
Answer:
16i - 1
Solution:
- Given : x = -1 + i
- To find : x³ - 6x² + 2x - 1
We have ;
=> x = -1 + 1
=> x + 1 = i
=> (x + 1)² = i² { squaring both sides }
=> x² + 2x + 1 = -1
=> x² + 2x + 1 + 1 = 0
=> x² + 2x + 2 = 0
Now,
Let's divide x³ - 6x² + 2x - 1 by x² + 2x + 2 .
Thus,
Here we go ↓
x² + 2x + 2 ) x³ - 6x² + 2x - 1 ( x - 8
x³ + 2x² + 2x
– – –
– 8x² – 1
– 8x² – 16x – 16
+ + +
16x + 15
Here,
Dividend = x³ - 6x² + 2x - 1
Divisor = x² + 2x + 2
Quotient = x - 8
Remainder = 16x + 15
Also,
We know that ;
Dividend = Divisor × Quotient + Remainder
Thus,
x³- 6x²+ 2x -1 = (x²+ 2x+ 2)×(x - 8) + 16x +15
= 0×(x - 8) + 16x + 15
= 0 + 16(-1 + i) + 15
= -16 + 16i + 15
= 16i - 1