if x = 1/root7 - root of 6 then find x+ 1/x
Answers
Answered by
2
Hi ,
1 ) x = 1/( √7 - √6 )
= ( √7 + √6 )/[ ( √7 - √6 )( √7 + √6 ) ]
= ( √7 + √6 ) /[ ( √7 )² - ( √6 )² ]
= ( √7 + √6 ) / ( 7 - 6 )
= √7 + √6 ---( 1 )
2 ) x = 1/ ( √7 - √6 )
1/x = √7 - √6 ---( 2 )
Therefore ,
x + 1/x = √7 + √6 + √7 - √6
= 2√7
I hope this helps you.
: )
1 ) x = 1/( √7 - √6 )
= ( √7 + √6 )/[ ( √7 - √6 )( √7 + √6 ) ]
= ( √7 + √6 ) /[ ( √7 )² - ( √6 )² ]
= ( √7 + √6 ) / ( 7 - 6 )
= √7 + √6 ---( 1 )
2 ) x = 1/ ( √7 - √6 )
1/x = √7 - √6 ---( 2 )
Therefore ,
x + 1/x = √7 + √6 + √7 - √6
= 2√7
I hope this helps you.
: )
Similar questions
Computer Science,
7 months ago
Math,
7 months ago
Math,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago
Math,
1 year ago