Math, asked by priyanshua4400, 9 months ago

If x = 1 - V2.find the value of (x-1/x)^3​

Answers

Answered by StarrySoul
34

Correct Question :

If x = 1 - √2,Find the value of (x-1/x)³

Solution :

 \sf \: x = 1 -  \sqrt{2}

\longrightarrow \:  \sf  \dfrac{1}{x} \:  =  \dfrac{1}{1 -  \sqrt{2} }

Rationalize the denominator :

\longrightarrow \:  \sf  \dfrac{1}{x} \:  =   \dfrac{1 \times 1 +  \sqrt{2} }{(1 -  \sqrt{2})(1 +  \sqrt{2} ) }

\longrightarrow \:  \sf  \dfrac{1}{x} \:  =   \dfrac{1 +  \sqrt{2} }{( {1)}^{2} -   (\sqrt{ {2})^{2} } }

 \longrightarrow \sf  \dfrac{1}{x} \:  =   \dfrac{1 +  \sqrt{2} }{1 - 2 }

 \longrightarrow \sf  \dfrac{1}{x} \:  =   \dfrac{1 +  \sqrt{2} }{ -1 }

 \longrightarrow \:  \sf  \dfrac{1}{x} \:  =  - 1 - \sqrt{2}

Put the value of x and 1/x :

  \bigstar \boxed{\sf \: (x -  \frac{1}{x} ) ^{3} }

 \longrightarrow \:  \sf [(1 -  \sqrt{2})  - ( - 1 -  \sqrt{2} )] ^{3}

 \longrightarrow \:  \sf (1 -  \sqrt{2}   +  1  +   \sqrt{2} ) ^{3}

 \longrightarrow \:  \sf (2) ^{3}

 \longrightarrow \red{\sf \: 8}

Answered by Anonymous
15

__________________________

\huge\tt{GIVEN:}

  • x = 1 - √2

__________________________

\huge\tt{TO~FIND:}

  • value of (x-1/x)³

__________________________

\huge\tt{SOLUTION:}

↪x = 1-√2

↪1/x = 1/(1-√2)

↪1/x = {1×1+√2} / {(1-√2)(1+√2)}

↪1/x = {1+√2} / {1²-√2²}

↪1/x = {1+√2} / {1-2}

↪1/x = {1+√2} / {-1}

↪1/x = -1 - √2

Putting values,

↪[{1-√2} - {-1 -√2} ]³

↪{1-√2+1+√2}³

↪2³

↪8

__________________________

Similar questions