Math, asked by hetraj1359, 11 hours ago

If x − 1 /x = 1/3 , evaluate x^ 3 − 1 /x^ 3

Answers

Answered by amansharma264
8

EXPLANATION.

⇒ (x - 1/x) = 1/3.

As we know that,

Cubing on both sides of the equation, we get.

⇒ (x - 1/x)³ = (1/3)³.

As we know that,

Formula of :

⇒ (a - b)³ = a³ - 3a²b + 3ab² - b³.

Using this formula in the equation, we get.

⇒ (x)³ - 3(x)²(1/x) + 3(x)(1/x)² - (1/x)³ = (1/3)³.

⇒ (x)³ - 3x + 3/x - (1/x)³ = (1/3)³.

⇒ x³ - 3(x - 1/x) - 1/x³ = 1/27.

Put the values of (x - 1/x) = 1/3 in the equation, we get.

⇒ x³ - 3(1/3) - 1/x³ = 1/27.

⇒ x³ - 1 - 1/x³ = 1/27.

⇒ x³ - 1/x³ - 1 = 1/27.

⇒ x³ - 1/x³ = 1/27 + 1.

x³ - 1/x³ = (28/27).

Answered by as3801504
19

Answer:

{\implies}{ \boxed{\mathbb{\red{given \: that }}}}\\  x -  \frac{1}{x} =  \frac{1}{3}  \\ to \: find =  {x}^{3}  -  \frac{1}{ {x}^{3} }  \\ {\implies}{ \boxed{\mathbb{\red{solution}}}}  \\   \\cubing \: both \: side \\ we \: get \\ (x -  \frac{1}{x}) ^{3}      =(  \frac{1}{3} )^{3}  \\ we \: know \: that \: identity \\ {\implies}{ \boxed{\mathbb{\pink{(a - b) {}^{3} =  {a}^{3}  - {b}^{3}  - 3ab(a - b) }}}}\\   {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3 \times x \times  \frac{1}{x} (x -  \frac{1}{x} ) =  \frac{1}{27}  \\{\implies}{ \boxed{\mathbb{\blue{ putting \: value \: of \: x -  \frac{1}{x} we \: get }}}}\\  {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3( \frac{1}{3} ) =  \frac{1}{27}  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  - 1 =  \frac{1}{27}  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  =  \frac{1}{27}  + 1 \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  =  \frac{1 + 27}{27}  \\  {\implies}{ \boxed{\mathbb{\orange{{x}^{3}  -  \frac{1}{ {x}^{3} }  =  \frac{28}{27} }}}}

Step-by-step explanation:

.

Similar questions