Math, asked by parveerbhangu2006, 10 months ago

If x+1/x=-1 then find value of x square+1/x square

Answers

Answered by waqarsd
7

Answer:

 \color{red} \bold{\large{ {x}^{2}  +  \frac{1}{ {x}^{2} }  =  - 1}}

Step-by-step explanation:

 \bold{given} \\  \\  \bold{x +  \frac{1}{x}  =  - 1} \\  \\  \bold{squaring \: on \: both \: sides} \\  \\  \bold{ {(x +  \frac{1}{x} )}^{2}  =  {( - 1)}^{2} } \\  \\  \bold{ {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}  = 1} \\  \\  \bold{ {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 1} \\  \\  \bold{ {x}^{2}  +  \frac{1}{ {x}^{2} }  =  - 1} \\  \\   \large \color{blue}\bold{formula >  =  >  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2} + 2xy }

<marquee> HOPE IT HELPS

Answered by ishu7059
1

Step-by-step explanation:

x+1/x=1 (given)

on squaring above we have -

x^2+1/x^2+2=1^2

x^2+1/x^2+2=1

x square+1/x square= 1-2

x square+1/xsquare = -1

Similar questions