Math, asked by ruddrakashasrivastav, 23 days ago

if x+1/x = 10/3 find the value of x^3- 1/x^3 pls anyone tell this answer​

Answers

Answered by rohangupta0424
1

Answer:

x+\displaystyle\frac{1}{x}=\displaystyle\frac{10}{3}

3x^2-10x +3=0

3x^2- x -9x +3=\displaystyle\frac{10}{3}

x(3x-1) -3(3x-1)=\displaystyle\frac{10}{3}

(x-3)(3x-1)=\displaystyle\frac{10}{3}

x=3, \: \displaystyle\frac{1}{3}

1st solution : (Taking x as 3)

x^3-\displaystyle\frac{1}{x^3}=3^3-\displaystyle\frac{1}{3^3}

27-\displaystyle\frac{1}{27}=\displaystyle\frac{729-1}{27}=\displaystyle\frac{728}{27}

2nd solution : (Taking x as 1/3)

x^3-\displaystyle\frac{1}{x^3}=\displaystyle\frac{1^3}{3^3}-\displaystyle\frac{1}{\displaystyle\frac{1^3}{3^3}}

\displaystyle\frac{1}{27}-27=\displaystyle\frac{1-729}{27}=\displaystyle\frac{-728}{27}

@rohangupta0424

Similar questions