Math, asked by haroldran345, 2 months ago

If x + 1/x = 10/3 find x3 - 1/3x

Answers

Answered by TyrannosaurusRex1
1

Answer:

x + \frac{1}{x} =\frac{10}{3} \\\frac{x^{2} + 1}{x} = 10/3\\3(x^{2}  + 1) = 10x\\3x^{2} -10x +3 = 0\\\\x = 9 (quadratic    formula)\\x^{3} -\frac{1}{3x} = 9^{3} - \frac{1}{3(9)} \\= 729 - \frac{1}{27} = \frac{19683-1}{27} = \frac{19682}{27}

Step-by-step explanation:

Answered by TYKE
12

__________________________________________________

Question :

  \sf \small If \:  x +  \frac{1}{ x }  =  \frac{10}{3}  \: then \: find \:  {x}^{3}  -  \frac{1}{ {x}^{3} }

To find :

 {x}^{3}  -  \frac{1}{ {x}^{3} }

Solution :

First we need to get x² + 1/x² to get x - 1/x and then we need to cube x - 1/x to get the value of x³ - 1/x³

(x +  \frac{1}{x} )^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2

 {( \frac{10}{3}) }^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2

 {x}^{2}  +  \frac{1}{ {x}^{2} }  =   \frac{100}{9}   - 2

 {x}^{2}  +  \frac{1}{ {x}^{2} }  =  \frac{100 - 18}{9}

 \boxed{ {x}^{2} +   \frac{1}{ {x}^{2} }  =  \frac{82}{9} }

Now we will apply it in finding x - 1/x

(x -  \frac{1}{x})^{2} =   {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2

By putting the value of x² + 1/x² we get

(x -  \frac{1}{x} )^{2}  =  \frac{82}{9}  - 2

 {(x -  \frac{1}{x} )}^{2}  =  \frac{82 - 18}{9}

 {(x -  \frac{1}{x}) }^{2}  =  \frac{64}{9}

x -  \frac{1}{x}  =  \sqrt{ \frac{64}{9} }

\boxed{x -  \frac{1}{x}  =  \frac{8}{3}}

According to the plan we now need to cube x - 1/x

 {x}^{3}  -  \frac{1}{ {x}^{3} }  = x -  \frac{1}{ x }  + 3(x -  \frac{1}{x} )

Now we need to put the values in place of these variables

 {x}^{3}  -   \frac{1}{ {x}^{3} }   =  \frac{8}{3}  + 3 \times  \frac{8}{3}

 {x}^{3}  -  \frac{1}{ {x}^{3} }  =  \frac{8}{3}  + 8

 {x}^{3}  -  \frac{1}{ {x}^{3} }  =  \frac{8 + 24}{3}

 {x}^{3}  -  \frac{1}{ {x}^{3} }  =  \frac{32}{3}

 {x}^{3}  -  \frac{1}{ {x}^{3} }   \rarr  10 \frac{2}{3}

 \sf \small  \blue{So }\:  \green{ the} \:   \pink{value  }\:  \orange{is }  \rarr \boxed{ \purple{ 10\frac{2}{3} }}

__________________________________________________

Similar questions