Math, asked by aahanasingh15, 10 months ago

If (x+1/x)²=3
Prove that (x³+1/x³)=0

Answers

Answered by kailashmeena123rm
13

ANSWER

WE KNOW

(X+1/X) ^3 = X3+1/X3 +3(X+1/X)

SO

X3+1/X3 = (x+1/x) ^3 -3(x+1/x)

= 3√3-3√3

= 0

{since

(x+1/x) = √3

which implies (x+1/x) ^3 = 3√3}

hope it helps

follow me

bye

Answered by Anonymous
53

Step-by-step explanation:

Given : {\sf{\ \ \left( x + {\dfrac{1}{x}} \right) ^2 = 3}}

_____________________________

{\boxed{\tt{\bigstar \ Identity \ : \ (a + b)^2 = a^2 + b^2 + 2ab}}}

{\tt{Here, \ a = x, \ b = {\dfrac{1}{x}} }}

_____________________________

On further solving, we get

\implies{\sf{ (x)^2 + \left( {\dfrac{1}{x}} \right) ^2 + 2 . x . {\dfrac{1}{x}} = 3}}

\implies{\sf{ x^2 + {\dfrac{1}{x^2}} + 2 = 3}}

\implies{\sf{ x^2 + {\dfrac{1}{x^2}} = 3 - 2}}

\implies{\sf{ x^2 + {\dfrac{1}{x^2}} = 1 \qquad \qquad ...(1)}}

_____________________________

To Prove : {\sf{\ \ x^3 + {\dfrac{1}{x^3}} = 0}}

_____________________________

{\boxed{\tt{\bigstar \ Identity \ : \ a^3 + b^3 = (a + b)(a^2 + b^2 - ab)}}}

{\tt{Here, \ a = x, \ b = {\dfrac{1}{x}} }}

_____________________________

L.H.S. = {\sf{ x^3 + {\dfrac{1}{x^3}} }}

\implies{\sf{ \left( x + {\dfrac{1}{x}} \right) \left[ (x)^2 + \left( {\dfrac{1}{x}} \right) ^2  - x . {\dfrac{1}{x}} \right] }}

\implies{\sf{ \left(x + {\dfrac{1}{x}} \right) \left( x^2 + {\dfrac{1}{x^2}} - 1\right) }}

\implies{\sf{ \left(x + {\dfrac{1}{x}} \right) (1 - 1) \qquad ...[ From (1) ] }}

\implies{\sf{ \left(x + {\dfrac{1}{x}} \right) (0) }}

\implies{\sf{ 0 }}

= R.H.S.

Hence, proved !!


Anonymous: äwesomé ✨
Anonymous: Thanks :p
Similar questions