Math, asked by Zibi, 1 year ago

If x- 1\x=-2, find the value of x^2 + 1/x^2

Answers

Answered by abhi569
0
x - \frac{1}{x} = - 2

Square on both sides,

 {(x - \frac{1}{x}) }^{2} = {( - 2)}^{2} \\ \\ \\ = > {x}^{2} + \frac{1}{ {x}^{2} } - 2(x \times \frac{1}{x} ) = 4 \\ \\ \\ => {x}^{2} + \frac{1}{ {x}^{2} } - 2 = 4 \\ \\ \\ => {x}^{2} + \frac{1}{ {x}^{2} } = 4 + 2 \\ \\ \\ => {x}^{2} + \frac{1}{ {x}^{2} } = 6

abhi569: Kindly refresh your page
Answered by aads123
1

Answer:

x - \frac{1}{x} = - 2

Square on both sides,

{(x - \frac{1}{x}) }^{2} = {( - 2)}^{2} \\ \\ \\ = > {x}^{2} + \frac{1}{ {x}^{2} } - 2(x \times \frac{1}{x} ) = 4 \\ \\ \\ => {x}^{2} + \frac{1}{ {x}^{2} } - 2 = 4 \\ \\ \\ => {x}^{2} + \frac{1}{ {x}^{2} } = 4 + 2 \\ \\ \\ => {x}^{2} + \frac{1}{ {x}^{2} } = 6

Step-by-step explanation:

Similar questions