Math, asked by skmondal65, 10 months ago

If x+1/x=2,prove that x2+1/x2=x3+1/x3=x4+1/x4​

Answers

Answered by Anonymous
63

Solution

Given:::X+1/X=2

now...

x²+1/x²=(x+1/x)²-2(x)(1/x)

=2²-2

=4-2

=2

x³+1/x³=(x+1/x){x²+1/x²-x.(1/x)}

=2(2-1)

=2

x⁴+1/x⁴=(x²+1/x²)²-2(x²)(1/x²)

=2²-2

=4-2

=2

therefore...x²+1/x²=x³+1/x³=x⁴+1/x⁴ [proved]

Answered by EliteSoul
134

Step-by-step explanation:

Given :-

 \\ x +  \frac{1}{x}  = 2

To prove:-

x {}^{2}  +  \frac{1}{x {}^{2} }  = x {}^{3}  +  \frac{1}{x {}^{3} }  = x {}^{4}  +  \frac{1}{x {}^{4} }

\huge\bf\orange{Solution:-}

x {}^{2}  +  \frac{1}{x {}^{2} } = (x +  \frac{1}{x} ) {}^{2} - 2 \times x \times  \frac{1}{x}   \\  = 2 {}^{2} - 2 \\  = 4 - 2 \\  = 2

Then,

x {}^{3}  +  \frac{1}{x {}^{3} }  = (x +  \frac{1}{x} ) {}^{3} - 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x}  ) \\  = 2 {}</h3><h3>^{3} - 3 \times 2 \\  = 8 - 6 \\  = 2

Again,

x {}^{4}  +  \frac{1}{x {}^{4} } = (x {}^{2}   +  \frac{1}{x {}^{2} } ) {}^{2} - 2 \times x  {}^{2} \times  \frac{1}{x {}^{2} } \\  = 2 {}^{2}   - 2 \\  = 4 - 2 \\  = 2

So,

x {}^{2} +  \frac{1}{x {}^{2} }   = x {}^{3} +  \frac{1}{x {}^{3} }  = x {}^{4} +  \frac{1}{x {}^{4} }

[Proved]

Follow me ⭐⭐⭐

Similar questions