Math, asked by arya998145, 5 months ago

If x + ( 1/x ) = 2 , the value of x⁴ + (1/x⁴) is equal to

Answers

Answered by Anonymous
0

Answer:

ANSWER

x

4

+

x

4

1

=119

Adding 2 on both the sides,

x

4

+

x

4

1

+2=119+2

(x

2

+

x

2

1

)

2

=121⇒x

2

+

x

2

1

=11

Subtracting 2 on both sides.

x

2

+

x

2

1

−2=11−2

(x−

x

1

)

2

=9⇒x−

x

1

=±3

Hence, x−

x

1

=3.

Answered by Anonymous
2

AnwEr :

\rightarrow \tt x +  \dfrac{1}{x} = 2

\rightarrow \tt  \bigg(x +  \dfrac{1}{x} \bigg) ^{2}  = 4  \\  \\ \rightarrow \tt  {x}^{2}  +  \frac{1}{x {}^{2} }  + 2 \cancel{x} \times  \frac{1}{ \cancel{x}}  = 4 \\  \\ \rightarrow \tt  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 2

Squaring again on both sides ,

\rightarrow \tt  \bigg(  {x}^{2} +  \dfrac{1}{ {x}^{2} }  \bigg) ^{2}  = 4 \\  \\\rightarrow \tt  {x}^{4}   +  \frac{1}{ {x}^{4} }   + 2 \cancel{x {}^{2} }  \times \frac{1}{  \cancel{x}^{2} }  = 4 \\  \\ \rightarrow \tt  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 2

Similar questions