Math, asked by advancedcattechnical, 9 months ago

If x+1/x=2 then x^10+ 1/x^10+5=?

Answers

Answered by BrainlyIAS
68

Answer

  • \tt x^{10} +\dfrac{1}{x^{10}}+5=7

Given

  • \tt x+\dfrac{1}{x}=2

To Find

  • \tt x^{10}+\dfrac{1}{x^{10}}+5

Solution

\boxed{\begin{minipage}{6cm}  \bold{\tt{$ \bold{x+\dfrac{1}{x}=2}}\\\\\bold{Squaring\ on\ both\ sides\ , we\ get\:,}\\\\\bold{\implies (x+\dfrac{1}{x})^2=2^2}\\\\\bold{\implies x^2+\dfrac{1}{x^2}+2.x.\dfrac{1}{x}=4}\\\\\bold{\implies x^2+\dfrac{1}{x^2}+2=4}\\\\\bold{\implies x^2+\dfrac{1}{x^2}=2...(1)$}} \end{minipage}}

\boxed{\begin{minipage}{6cm}  \tt {$\tt{x+\dfrac{1}{x}=2}\\\\ \tt {Cubing\ on\ both\ sides\ , we\ get\ ,}\\\\\implies \tt{(x+\dfrac{1}{x})^3=2^3}\\\\\implies \tt{x^3+\dfrac{1}{x^3}+3.x.\dfrac{1}{x}(x+\dfrac{1}{x})=8}\\\\\implies \tt{x^3+\dfrac{1}{x^3}+6=8}\\\\\implies \tt{x^3+\dfrac{1}{x^3}=2...(2)}$} \end{minipage}}

Multiply (1) & (2) , we get ,

\tt x^5 +\dfrac{1}{x}+x+\dfrac{1}{x^5}=2 \times 2\\\\\implies\tt  (x^5+\dfrac{1}{x^5})=4-(x+\dfrac{1}{x})\\\\\implies \tt x^5+\dfrac{1}{x^5}=2

Squaring on both sides , we get ,

\implies \tt x^{10}+\dfrac{1}{x^{10}}+2.x^5.\dfrac{1}{x^5}=4\\\\\implies \tt x^{10}+\dfrac{1}{x^{10}}=2\\\\\implies \tt x^{10}+\dfrac{1}{x^{10}}=7-5\\\\\implies \bf x^{10}+\dfrac{1}{x^{10}}+5=7


Anonymous: Great :)
amitkumar44481: Nice :-)
Anonymous: Nice
Answered by Anonymous
321

Given

 \huge{ \bf x +  \dfrac{1}{x} = 2 }

Squaring Both Sides

 \bf (x +  \dfrac{1}{x}  {)}^{2}  = ( {2)}^{2}

Identity Used :- (a+b)² = a² + 2ab + b²

Case 1

 \implies \bf {x}^{2}  + 2 \times  \cancel{x} \times  \dfrac{1}{ \cancel{x}}  +   \dfrac{1}{ {x}^{2} }  = 4

  \implies \bf{x}^{2}  + 2 +  \dfrac{1}{ {x}^{2} }  = 4

 \implies  \bf x^{2} +  \dfrac{1}{ {x}^{2} }  = 4 - 2

 \implies  \bf x ^{2}+  \dfrac{1}{ {x}^{2} } = 2

Now, Cubing the result

Case 2

 \huge ({{ \bf x +  \dfrac{1}{x} })^{3}  =  {2}^{3} }

  \bf{x}^{3}  +  \dfrac{1}{ {x}^{3} }  + 3 \times x \times  \dfrac{1}{x} (x +  \dfrac{1}{x} ) = 8

Identity Used :- (a+b)³ = a³ + b³ + 3ab(a+b)

 \implies \bf  {x}^{3}  +  \dfrac{1}{ {x}^{3} }  +  3(x +  \dfrac{1}{x} ) = 8

Value of  \bf x + \dfrac{1}{x} is given 2

 \implies \bf  {x}^{3}  +  \dfrac{1}{ {x}^{3} } + 3(2)     = 8

 \implies \bf  {x}^{3}  +  \dfrac{1}{ {x}^{3} }    + 6 = 8

 \implies \bf  {x}^{3}  +  \dfrac{1}{ {x}^{3} }   = 8 - 6

 \implies \bf  {x}^{3}  +  \dfrac{1}{ {x}^{3} }   = 2

If we Multiply Case 1 & Case 2, we get  \bf ( x + \dfrac{1}{x} ) ^{5}

 \bf \longrightarrow ( {x}^{2}  +  \dfrac{1}{ {x}^{2} } )( {x}^{3}  +  \frac{1}{ {x}^{3} } ) = (2)(2)

 \bf \longrightarrow  {x}^{5}  +  \dfrac{1}{x}   + x +  \dfrac{1}{ {x}^{5} }  = 2 \times 2

 \bf \implies( x ^{5}  +  \dfrac{1}{ {x}^{5} } ) = 4 - (x +  \dfrac{1}{x} )

Value of  \bf x + \dfrac{1}{x} is given 2

 \bf \implies( x ^{5}  +  \dfrac{1}{ {x}^{5} } ) = 4 - 2

 \bf \implies x ^{5}  +  \dfrac{1}{ {x}^{5} }  = 2

Squaring Both Sides

 \bf ( x ^{5}  +  \dfrac{1}{ {x}^{5} } ) ^{2}  =  {2}^{2}

Using Identity (a+b)² = a² + 2ab + b²

 \bf \longrightarrow ( {x}^{5} ) ^{2}  + 2 \times {x}^{5} \times  \dfrac{1}{{x}^{5} }  +  (\dfrac{1}{ {x}^{5}}) ^{2}  = 4

 \bf {x}^{10}  + 2  + \dfrac{1}{ {x}^{10} }  = 4

  \bf \implies {x}^{10}  +  \dfrac{ 1 }{ {x}^{10} }  = 4 - 2

  \bf \implies {x}^{10}  +  \dfrac{ 1 }{ {x}^{10} }   = 2

  \bf \implies {x}^{10}  +  \dfrac{ 1 }{ {x}^{10} }   = 7-5

  \bf \implies {x}^{10}  +  \dfrac{ 1 }{ {x}^{10} }  + 5 = 7


BloomingBud: nice answer
Anonymous: Awesome ♥️
Anonymous: superb!
Anonymous: Fantastic :D
Anonymous: Great ♡
Anonymous: Good
Similar questions