Math, asked by rgupta8, 1 year ago

if x-1/x=3+2root2,find the value of x^3-1/x^3


rgupta8: ok no problem
raghav0143: so r u doing
rgupta8: no
rgupta8: i have to go to tution
rgupta8: bye
raghav0143: okh
raghav0143: if interested den msg me on fb..raghav0143 my usernam there
rgupta8: ok
rgupta8: bye
raghav0143: bye

Answers

Answered by kmkshrm
37
...........................................may help u
Attachments:

rgupta8: i thank u
rgupta8: but ur answer is wrong
kmkshrm: ohh so sorry
Answered by Haezel
13

Answer:

The value of \bold{x^{3}-\frac{1}{x}^{3}=215.47}

Step-by-step explanation:

To find: Value of x^{3}-\frac{1}{x^{3}}

According to formulae,

\begin{array}{l}\bold{{(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)}} \\ {a=x \text { and } b=\frac{1}{x}} \\ {\left(x-\frac{1}{x}\right)^{3}=x^{3}-\frac{1}{x}^{3}-3 . x \cdot \frac{1}{x}\left(x-\frac{1}{x}\right)}\end{array}

As the question says  

x-\frac{1}{x}=3+2 \sqrt{2}

Now applying the formula, we get,

(3+2 \sqrt{2})^{3}=x^{3}-\frac{1}{x}^{3}-3(3+2 \sqrt{2})

Solving the equation,

\begin{array}{l}{(3+2 \sqrt{2})^{3}+3(3+2 \sqrt{2})=x^{3}-\frac{1^{3}}{x}} \\ {195.112+17.48=x^{3}-\frac{1^{3}}{x}} \\ {215.47=\mathrm{x}^{3}-\frac{1^{3}}{\mathrm{x}}}\end{array}

Thus the value of x^{3}-\frac{1}{x}^{3}=\bold{215.47}

Similar questions