Math, asked by Simran2003, 1 year ago

If x+1/x = 3,
Find 1) x²+1/x² 2) x³+1/x³

Answers

Answered by OS13
2
Hey!!!
________________________________
●Since,
x + \frac{1}{x} = 3
Therefore,Squaring both sides,
1)
 {(x + \frac{1}{x})}^{2} = {3}^{2} \\ {x}^{2} + \frac{ {1}^{2} }{ {x}^{2} } + 2 \times x \times \frac{1}{x} = 9\\ {x}^{2} + \frac{1}{ {x}^{2} } = 9 - 2 \\ {x}^{2} + \frac{1}{ {x}^{2} } = 7

2)(x+1/x)^3=3^3

=x^3+1/x^3+3×x×1/x(x+1/x)=27

=x^3+1/x^3+3×1×3=27 (since,x+1/x=3)

=x^3+1/x^3=27-9

=x^3+1/x^3=18
________________________________
Hope it helps!!! :)

Simran2003: the second bit ??
Similar questions