Math, asked by adityashourya317, 2 months ago

If x-1/x = 3, find the value of x^3+1/x^3​

Answers

Answered by sandy1816
0

x -  \frac{1}{x}  = 3 \\ ( {x -  \frac{1}{x} })^{2}  = 9 \\ ( {x +  \frac{1}{x} })^{2}  - 4 = 9 \\ ( {x +  \frac{1}{x} })^{2}  = 13 \\ x +  \frac{1}{x}  =  \sqrt{13}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{ 3} }  = ( {x +  \frac{1}{x} })^{3}  - 3(x +  \frac{1}{x} ) \\  = ( { \sqrt{13} })^{3}  - 3 \sqrt{13}  \\  = 13 \sqrt{13}  - 3 \sqrt{13}  \\  = 10 \sqrt{13}

Similar questions