Math, asked by smnhn1914, 9 days ago

If x+1/x=3 then find value of x-1/x=? And x^4 - 1/x^4=?​

Answers

Answered by amansharma264
8

EXPLANATION.

⇒ (x + 1/x) = 3.

As we know that,

Squaring on both sides of the equation, we get.

⇒ (x + 1/x)² = (3)².

⇒ (x)² + (1/x)² + 2(x)(1/x) = 9.

⇒ x² + 1/x² + 2 = 9.

⇒ x² + 1/x² = 9 - 2.

⇒ x² + 1/x² = 7.

As we know that,

Formula of :

⇒ (x - y)² = x² + y² - 2xy.

Using this formula in the equation, we get.

⇒ (x - 1/x)² = (x)² + (1/x)² - 2(x)(1/x).

⇒ (x - 1/x)² = x² + 1/x² - 2.

Put the values of (x² + 1/x² = 7) in the equation, we get.

⇒ (x - 1/x)² = 7 - 2.

⇒ (x - 1/x)² = 5.

(x - 1/x) = √5.

⇒ (x⁴ - 1/x⁴) = (x² + 1/x²)(x² - 1/x²).

⇒ (x⁴ - 1/x⁴) = (x² + 1/x²)(x - 1/x)(x + 1/x).

Put the values in the equation, we get.

⇒ (x⁴ - 1/x⁴) = (7)(√5)(3).

(x⁴ - 1/x⁴) = 21√5.

Answered by Anonymous
91

 \large \underline{ \underline{ \text{Question:}}} \\

  • If x + 1/x = 3 then find value of x - 1/x = ? And x⁴ - 1/x⁴ = ?

 \large \underline{ \underline{ \text{Solution:}}} \\

As given,

 \longrightarrow x +  \frac{1}{x}  = 3 \\

As we know that,

[ {(x -  y)}^{2} =  {(x + y)}^{2}  - 4xy  ] \\

So we can say that,

 \longrightarrow  { \bigg(x -  \frac{1}{x} \bigg) }^{2}   =  { \bigg(x +  \frac{1}{x} \bigg) }^{2}  - 4(x)( \frac{1}{x} )\\

Let substitute the given value,

 \longrightarrow  { \bigg(x -  \frac{1}{x} \bigg) }^{2}   =  {3}^{2}  - 4\\

 \longrightarrow  { \bigg(x -  \frac{1}{x} \bigg) }^{2}   = 9 - 4\\

 \longrightarrow  { \bigg(x -  \frac{1}{x} \bigg) }^{2}   =  {( \sqrt{5} )}^{2} \\

Comparing both sides,

 \longrightarrow   \boxed{x -  \frac{1}{x}  =  \sqrt{5}} \\  \\

As we know that,

[ {x}^{2}  -  {y}^{2}  = (x + y)(x - y)  ] \\

So we can say that,

 \longrightarrow  {x}^{2} -  \frac{1}{ {x}^{2} }   =   \bigg( x +  \frac{1}{x} \bigg) \bigg( x -  \frac{1}{x} \bigg)    \\

Let substitute the values,

 \longrightarrow  {x}^{2} -  \frac{1}{ {x}^{2} }   =   3 \sqrt{5} \:  \:  \:  \:  \: ...(1)  \\

We have,

 \longrightarrow x +  \frac{1}{x}  = 3 \\

Squaring both sides,

 \longrightarrow { \bigg(x +  \frac{1}{x} \bigg)}^{2}   =  {3}^{2}  \\

As we know that,

[  {(x + y)}^{2} =  {x}^{2} +  {y}^{2}  + 2xy  ] \\

So we can say that,

 \longrightarrow  {x}^{2} + 2(x)( \frac{1}{x} ) +  { \bigg(\frac{1}{x} \bigg)}^{2}   = 9 \\

We get,

 \longrightarrow  {x}^{2} + 2+  \frac{1}{ {x}^{2} } =  9 \\

 \longrightarrow  {x}^{2} +  \frac{1}{ {x}^{2} } =  9  - 2\\

 \longrightarrow  {x}^{2} +  \frac{1}{ {x}^{2} } =  7 \:  \:  \:  \:  \: ...(2)\\

As we know that,

[ {x}^{2}  -  {y}^{2}  = (x + y)(x - y)  ] \\

So we can say that,

 \longrightarrow   {x}^{4}  -  \frac{1}{ {x}^{4} }  =  \bigg({x}^{2} +  \frac{1}{ {x}^{2}} \bigg )  \bigg( {x}^{2} -  \frac{1}{ {x}^{2} } \bigg)  \\

Let substitute the values by (1) and (2),

 \longrightarrow   {x}^{4}  -  \frac{1}{ {x}^{4} }  =  7 \times (3 \sqrt{5})   \\

We get,

 \longrightarrow    \boxed{{x}^{4}  -  \frac{1}{ {x}^{4} }  = 21 \sqrt{5}}

Similar questions