Math, asked by drmuzaffar1975, 11 months ago

If x-1/x=3, then x⁴+1/x⁴
thank you​

Answers

Answered by Sharad001
40

Question :-

 \to \sf{if \: x \:  -  \frac{1}{x}  = 3 \:  \: then \: find \:  \:  {x}^{4}  +  \frac{1}{ {x}^{4} } } \\

Answer :-

\leadsto  \boxed{\sf{ {x}^{4} +  \frac{1}{ {x}^{4} }  = 119 }} \:

To Find :-

 \implies \sf{ {x}^{4}  +  \frac{1}{ {x}^{4} } } \ \:  \\

Solution :-

We have

 \leadsto  \: \sf{x -  \frac{1}{x}  = 3} \\  \\   \bf{ squaring \: on \: both \: sides \: } \\  \\   \leadsto \sf{} \:  { \bigg(x -  \frac{1}{x}  \bigg)}^{2}  = 9 \\  \\  \leadsto \sf{  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 \times x \times  \frac{1}{ x}  = 9} \\  \\   \leadsto \sf{{x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 = 9} \\  \\  \leadsto  \sf{ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 9 + 2} \\  \\  \leadsto \sf{ {x}^{2} +  \frac{1}{ {x}^{2} }   = 11} \\

 \bf{again \: squaring \: on \: both \: sides} \\  \\  \leadsto \sf{ { \bigg \{ {x}^{2}  +  \frac{1}{ {x}^{2} } \bigg \} }^{2} } = 121 \\  \\   \leadsto \sf{ {x}^{4} +  \frac{1}{ {x}^{4} }  + 2 \times  {x}^{2} \times  \frac{1}{ {x}^{2} } = 121   }  \\  \\  \leadsto \sf{  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 121} \\  \\  \leadsto \sf{ {x}^{4}  +  \frac{1}{ {x}^{4} }  = 121 - 2} \\  \\  \leadsto  \boxed{\sf{ {x}^{4} +  \frac{1}{ {x}^{4} }  = 119 }}

Answered by TrickYwriTer
6

Step-by-step explanation:

 \bold{Given - } \\ x -  \frac{1}{x}  = 3 \\  \\  \bold{To \: find - } \\ value \: of \:  {x}^{4}  +  \frac{1}{ {x}^{4} }  \\  \\  \bold{Now,} \\According \: to \: the \: question \\   \bold{squaring \: both \: sides - } \\ \implies (x -  \frac{1}{x}) {}^{2}   = (3) {}^{2}  \\   \implies{(x)}^{2}  +  {( \frac{1}{x}) }^{2}  - 2 \times  \cancel{x} \times  \frac{1}{ \cancel{x}}  = 9 \\  \implies {x}^{2}  +  \frac{1}{ {x}^{2} }  = 9 + 2 \\  \implies {x}^{2}  +  \frac{1}{ {x}^{2} }  = 11 \\   \bold{Again \: squaring \: both \: sides - } \\  \implies( {x}^{2}  +  \frac{1}{ {x}^{2} } ) {}^{2}  = (11) {}^{2}  \\  \implies {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 \times  \cancel{ {x}^{2}  }\times  \frac{1}{ \cancel{ {x}^{2}} }  = 121 \\   \implies {x}^{4}  +  \frac{1}{ {x}^{4} }  = 121 - 2 \\  \implies {x}^{4}  +  \frac{1}{ {x}^{4} }  = 119 \\  \\ Hence, \\ \bold{The \: value \: of \:  {x}^{4}  +  \frac{1}{ {x}^{4} }  \: is \: 119} \\  \\  \bold{Formula \: used - } \\ (a + b) {}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}  \\ (a - b) {}^{2}  =  {a}^{2}  - 2ab +  {b}^{2}

Other formulas like this -

  • (a+b)(a-b) = a² - b²
  • (a+b)³ = a³ + 3a²b + 3b²a + b³
  • (a-b)³ = a³ - 3a²b + 3b²a - b³
Similar questions