Math, asked by advayagiradkar, 1 month ago

if (x + 1/x)=4

calculate: x^3 - 1/x^3

Answers

Answered by SweetestBitter
4

\begin{gathered}\large {\boxed{\sf{\mid{\overline {\underline {\star ANSWER ::}}}\mid}}}\end{gathered}

Given :-

  • (x + 1/x) = 4

To Find :-

  • The value of x^3 - 1/x^3.

Solution :-

FORMULA :

 \boxed{ \sf{  {(a + b)}^{3}  =  {a}^{3} + 3 {a}^{2} b + 3a {b}^{2}  +  {b}^{3}  }}

It is given that (x + 1/x) = 4, Cubing on both sides :

 \sf { {(x +  \frac{1}{x} )}^{3} } =  {4}^{3} \\

Expanding by the formula :

 \sf { {(x +  \frac{1}{x} )}^{3} } =  {4}^{3} \\  \\  \sf{ {x}^{3} + 3( {x})^{2} ( \frac{1}{x} ) + 3x( { \frac{1}{x} )}^{2} +  { (\frac{1}{x} )}^{3}  = 64  } \\  \\  \sf{ {x}^{3} + 3x +  \frac{3}{x}   + { (\frac{1}{x} )}^{3}  } = 64 \\  \\ \sf{ {x}^{3} + 3(x +  \frac{1}{x})   + { (\frac{1}{x} )}^{3}  } = 64 \\  \\ \sf{ {x}^{3} + 3(4)   + { (\frac{1}{x} )}^{3}  } = 64 \\ \\  \sf{ {x}^{3} + { (\frac{1}{x} )}^{3}  } = 64 - 12 \\  \\  \star \: \underline{ \boxed{\sf{ {x}^{3} + { (\frac{1}{x} )}^{3}  } = 52}} \:  \star

@SweetestBitter

Similar questions