Math, asked by bellselvakumar, 1 month ago

if (x+1/x)=4, find the value of (x^2+1/x^2)​

Answers

Answered by Salmonpanna2022
19

Given:-

x +  \frac{1}{x}  = 4 \\  \\

To find:-

The \:  value \:  of  \: \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\

Solution:-

Let's solve the problem

we have

x +  \frac{1}{x}  = 4 \\  \\

Squaring on both sides, we get

 \bigg(x +  \frac{1}{x} \bigg)^{2}  = (4 {)}^{2}  \\

✯Using algebraic Identity

(a+b)² = a² + 2ab + b²

Now,

⟹ {x}^{2}  + 2 \times x \times  \frac{1}{x}   +  \bigg( \frac{1}{ {x}^{2} }  \bigg)^{2}  = 16 \\  \\

⟹ {x}^{2}  + 2 \times  \cancel{x} \times  \frac{1}{ \cancel{x}}  +  \frac{1}{ {x}^{2} }  = 16 \\  \\

⟹ {x}^{2}  + 2 +  \frac{1}{ {x}^{2} }  = 16 \\  \\

⟹ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 16 - 2 \\  \\

⟹ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 14 \\  \\

Answer:-

Hence, the \:  value  \: of \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  \:  is \: 14 \\  \\

  • I hope it's help you...☺
Similar questions