Math, asked by ishana78, 9 months ago

If x-1/x=4,then find the value of x2+1/x2

Answers

Answered by Anonymous
8

GIVEN:-

  • \rm{x-\dfrac{1}{x}=4}

TO FIND:-

  • \rm{x^2+\dfrac{1}{x^2}}

IDENTITY USED:-

  • \rm{(a-b)^2=a^2-2ab+b^2}

Now,

\implies\rm{x-\dfrac{1}{x}=4}

Squaring the both sides.

\implies\rm{(x-\dfrac{1}{x})^2=(4)^2}

\implies\sf{x^2+\dfrac{1}{x^2}-2\times{\cancel{x}}}\times{\dfrac{1}{\cancel{x}}}=16}

\implies\rm{x^2+\dfrac{1}{x^2}-2=16}

\implies\rm{x^2+\dfrac{1}{x^2}=18}.

Hence, The value of \rm{x^2+\dfrac{1}{x^2}} is 18.

SOME MORE IDENTITY.

  • \rm{(a+b)^2=a^2+2ab+b^2}

  • \rm{a^3+b^3=(a+b)(a^2-ab+b^2)}

  • \rm{a^3-b^3=(a-b)(a^2+ab+b^2)}
Answered by amanafzal09
0

Answer:

1/-2

Step-by-step explanation:

x-1/x= 4 (given)

(find) x2+1/x2

x-1=4x

4x-x=-1

3x=-1

x=-1/3

(-1/3)2+1/(-1/3)2

(-2/3)+1/(-2/3)

(-2+3)/3/-2/3

1/3/-2/3

1/-2 answer

Similar questions