If x+1/x=4,then find the value of x3+1/x3=
Answers
Answered by
4
Answer:
52
Step-by-step explanation:
Given: (x+1/x)=4
Property to be used:(a+b)^3=a^3+b^3+3ab(a+b)
(x+1/x)^3= x^3+1/x^3+(3)(x)(1/x)(x+1/x)
x^3+1/x^3=(x+1/x)^3-(3)(x)(1/x)(x+1/x)
x^3+1/x^3=(x+1/x)^3-(3)(x+1/x)
Now substitute the value of (x+1/x)
therefore, x^3+1/x^3=(4)^3-(3)(4)
Hence, x^3+1/x^3=52.
Similar questions