Math, asked by dharmendramaddi143, 8 months ago

If x+1/x=4,then find the value of x3+1/x3=

Answers

Answered by sejal3106
4

Answer:

52

Step-by-step explanation:

Given: (x+1/x)=4

Property to be used:(a+b)^3=a^3+b^3+3ab(a+b)

(x+1/x)^3= x^3+1/x^3+(3)(x)(1/x)(x+1/x)

x^3+1/x^3=(x+1/x)^3-(3)(x)(1/x)(x+1/x)

x^3+1/x^3=(x+1/x)^3-(3)(x+1/x)

Now substitute the value of (x+1/x)

therefore, x^3+1/x^3=(4)^3-(3)(4)

Hence, x^3+1/x^3=52.

Similar questions