Math, asked by vasumehta94, 1 year ago

If x + 1/x. =4 then find x2 +1|/x2

Answers

Answered by harendrachoubay
337

x^2+\dfrac{1}{x^2}=14

Step-by-step explanation:

We have,

x+\dfrac{1}{x}=4         .....(1)

To find, x^2+\dfrac{1}{x^2}=?

Squaring (1) in both sides, we get

(x+\dfrac{1}{x})^{2}=4^{2}

x^2+\dfrac{1}{x^2}+2.x.\dfrac{1}{x} =16

x^2+\dfrac{1}{x^2}+2 =16

x^2+\dfrac{1}{x^2}=16-2=14

x^2+\dfrac{1}{x^2}=14

Hence, x^2+\dfrac{1}{x^2}=14

Answered by hukam0685
29

The value of  \bf {x}^{2}  +  \frac{1}{ {x}^{2} }  = 14 if x +  \frac{1}{x}  = 4 \\

Given:

  • x +  \frac{1}{x}  = 4

To find:

  • Value of  {x}^{2}  +   \frac{1}{ {x}^{2} }

Solution:

Identity used:\bf ( {a + b)}^{2}  =  {a}^{2}  +  {b}^{2} + 2ab  \\

Step 1:

Take the given equation.

x +  \frac{1}{x}  = 4 \\

Step 2:

Squaring both sides by using Identity.

 \left( {x +  \frac{1}{x}} \right)^{2}  = ( {4)}^{2}   \\  \\

or

Apply identity in LHS

 {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times  \red x  \times \frac{1}{ \red x}  = 16 \\

cancel x in red

 {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2  = 16 \\

or

{x}^{2}  +  \frac{1}{ {x}^{2} }   = 16 - 2 \\

Thus,

\bf {x}^{2}  +  \frac{1}{ {x}^{2} } = 14 \\

Learn more:

1) if x-1/x =5 , find the value of x^2+1/x^2

https://brainly.in/question/4466778

2) given x²+1/x²=7 and x not equal to 0 find x²-1/x² write the steps also.

https://brainly.in/question/42994415

Similar questions