Math, asked by dizzygames17, 10 months ago

if x+1/x = 4 then x^3+1/x^3 is?

Answers

Answered by Anonymous
2

Answer:

X + 1/X = 4

Cubing both sides ,

( X + 1/X )³ = (4)³

X³ + 1/X³ + 3 × X × 1/X × ( X + 1/X ) = 64

X³ + 1/X³ + 3 × 4 = 64

X³ + 1/X³ = 52

thank my answer ❤️

Answered by Anonymous
12

 \huge \mathfrak \red{answer}

 \bf{ \boxed{ \underline{ \green{ \tt{ {x}^{ 3} =  \frac{1}{x {}^{3} }   = 52 \:  }}}}}}}

_________________________________

 \sf \huge \underline {Given}

 \rm{ \frac{x + 1}{x} = 4 \: then \:   \frac{ {x}^{3} + 1 }{ {x}^{3}} }

____________________________________

 \sf \underline{step \: by \: step \: explanation}

 \rm{x +  \frac{1}{x} = 4}

now cube on both sides we get,

 \sf \red{⟹ {x}^{3} -  \frac{1}{x {}^{3} } + 3(x \times  \frac{1}{x})(x +  \frac{1}{x}) = 64}

 \sf \blue{⟹ {x}^{3} +  \frac{1}{x} {}{2} + 3(1)(4) = 64}

 \sf \green{⟹ {x}^{3} +  \frac{1}{x {}^{3} } = 64 - 12}

 \sf \orange{⟹ {x}^{3} +  \frac{1}{x {}^{3} } = 52}

I hope it's help uh

Similar questions