If (x + ¹/x) = 5, find the value of l) (x² + 1/x²) ll) (x⁴ + 1/x⁴)
Answers
Answered by
7
EXPLANATION.
⇒ (x + 1/x) = 5.
As we know that,
Squaring on both sides of the equation, we get.
⇒ (x + 1/x)² = (5)².
⇒ x² + (1/x)² + 2(x)(1/x) = 25.
⇒ x² + 1/x² + 2 = 25.
⇒ x² + 1/x² = 25 - 2.
⇒ x² + 1/x² = 23.
Again, squaring on both sides of the equation, we get.
⇒ (x² + 1/x²)² = (23)².
⇒ (x²)² + (1/x²)² + 2(x²)(1/x²) = (23)².
⇒ x⁴ + 1/x⁴ + 2 = 529.
⇒ x⁴ + 1/x⁴ = 529 - 2.
⇒ x⁴ + 1/x⁴ = 527.
Answered by
8
x+1/x = 5
(x+1/x)2 = x2+1/x2 + 2
(5)2 = x2 + 1/x2 + 2
25-2 = x2 +1/x2 = 23
(x2+1/x2) 2= x4 +1/x4+2
(23)2 = x4 +1/x4+2
529-2= x4 +1/x4
527 = x4+1/x4
☆thank u for question ☆
Similar questions
India Languages,
24 days ago
Business Studies,
24 days ago
India Languages,
1 month ago
Math,
9 months ago
Math,
9 months ago