Math, asked by aaryanniraula, 1 month ago

 If x + (1/x) = 5, find the value of [x - (1/x)]^2. ​

Answers

Answered by shaikhilyas1969
2

Answer:

Given :

x+1/x = 5

We need to find x2 + 1 / x2

x+1/x2 = 25

= x2 + 1 / x2 + 2 x1/x = 25

= x2 + 1/x2 + 2 = 25

= x2 + 1 / x2 = 25 – 2

= x2 + 1 / x2=23

Hence x2 + 1 / x2 = 23

Answered by ajr111
3

Answer:

21

Step-by-step explanation:

Given :

\mathrm{x + \dfrac{1}{x} = 5}

To find :

\mathrm{\bigg(x - \dfrac{1}{x}\bigg)^2}

Solution :

Given condition is,

\longmapsto \mathrm{x + \dfrac{1}{x} = 5}

Squaring on both sides

\implies \mathrm{\bigg(x + \dfrac{1}{x}\bigg)^2 = 5^2}

We know that,

\boxed{\mathrm{(a + b)^2 = a^2 + 2ab + b^2}}

\implies \mathrm{\bigg(x^2 +2\not x. \dfrac{1}{\not x} + \dfrac{1}{x^2}\bigg) = 25}

\implies \mathrm{\bigg(x^2 +2 + \dfrac{1}{x^2}\bigg) = 25}

\implies \mathrm{x^2 + \dfrac{1}{x^2} = 25 - 2}

\implies \mathrm{x^2 + \dfrac{1}{x^2} = 23} ___ [1]

Now, given question is,

\longmapsto \mathrm{\bigg(x - \dfrac{1}{x}\bigg)^2}

We know that,

\boxed{\mathrm{(a - b)^2 = a^2 - 2ab + b^2}}

Here, a = x ; b = 1/x, so,

\implies \mathrm{\bigg(x^2 -2\not x. \dfrac{1}{\not x} + \dfrac{1}{x^2}\bigg)}

\implies \mathrm{x^2 -2+ \dfrac{1}{x^2}}

\implies \mathrm{x^2+ \dfrac{1}{x^2} - 2}

From [1]

\implies \mathrm{23 - 2}

\implies 21

\therefore \underline{\boxed{\mathbf{\bigg(x - \dfrac{1}{x}\bigg)^2 = 21}}}

Hope it helps!!

Similar questions