Math, asked by OCI, 1 year ago

if x+1/x =√5 find the value of x^2+1/x^2 and x^4+1/x^4

Answers

Answered by Anonymous
9

Answer:

x +  \frac{1}{x}  =  \sqrt{5}  \\ x {}^{2}  +  \frac{1}{x {}^{2} }  = (x +  \frac{1}{x})  {}^{2}  - 2 \times x \times  \frac{1}{x} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  (\sqrt{5} ) { }^{2}  - 2 = 5 - 2 = 3 \\ x {}^{4}  +  \frac{1}{x {}^{4} }  = (x  {}^{2}  +  \frac{1}{x {}^{2} } ) - 2 \times x {}^{2}  \times  \frac{1}{x {}^{2} } \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  >  3 {}^{2}  - 2 = 9 - 2 = 7

Similar questions