if x + 1/x =5 , find the value of x^3 + 1/x^3
Answers
Answered by
1
Answer:
110
Step-by-step explanation:
( a + b )^3 = a^3 + b^3 + 3ab( a + b )
⇒ x + 1 / x = 5
Cube on both sides:
⇒ ( x + 1 / x )^3 = 5^3
⇒ x^3 + 1 / x^3 + 3( x * 1 / x )( x + 1 / x ) = 125
⇒ x^3 + 1 / x^3 + 3( 1 )( x + 1 / x ) = 125
x + 1 / x = 5
⇒ x^3 + 1 / x^3 + 3( 5 ) = 125
⇒ x^3 + 1 / x^3 + 15 = 125
⇒ x^3 + 1 / x^3 = 125 - 15 = 110
Answered by
111
Step-by-step explanation:
if x + 1/x =5 , find the value of x^3 + 1/x^3
________________________________
- x + 1/x =5
- x^3 + 1/x^3
_______________________________
- x^3 + 1/x^3
_______________________________
First we solve:-
X- 1/X = 5
putting all values :-
( X- 1/X)³ = (5)³
X³ - 1/X³ - 3 ( X - 1/X ) = 125
X³ - 1/X³ - 3 ( 5 ) = 125
X³ - 1/X³ - 15 = 125
X³ - 1/X³ = 125 + 15 = 140
find the value of x^3 + 1/x^3 = 140
Similar questions