Math, asked by rairinku1980, 9 months ago

if x - 1/x =5 find the value of x square+1/x square and xsquare+1/x to the power four​

Answers

Answered by Anonymous
4

Solution:-

Given:-

 \rm \: x -  \frac{1}{x}  = 5

To find value of

 \rm \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  \:  \:  \:  \: and \:  \:  {x}^{4}  +  \frac{1}{x {}^{4} }

Now take

\rm \: x -  \frac{1}{x}  = 5

squaring on both side

\rm \:( x -  \frac{1}{x}  ) {}^{2} =( 5) {}^{2}

Use this identity

 \rm \: (a - b) {}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

We get

 \rm {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 \times x \times  \frac{1}{x}  = 25

\rm {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 \times  \not  x \times  \frac{1}{ \not  x}  = 25

\rm {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2   = 25

\rm {x}^{2}  +  \frac{1}{ {x}^{2} }     = 25 + 2

 \boxed{ \rm \: \rm {x}^{2}  +  \frac{1}{ {x}^{2} }    = 27}

Now take

 { \rm \: \rm {x}^{2}  +  \frac{1}{ {x}^{2} }    = 27}

Squaring on both side

 \rm \: ( {x}^{2}  +  \frac{1}{ {x}^{2} } ) {}^{2}  = (27) {}^{2}

we get ,

 \rm \: ( {x}^{2} ) {}^{2}  +  \frac{1}{( {x}^{2} ) {}^{2} }  + 2 \times x {}^{2}  \times  \frac{1}{ {x}^{2} }  =( 27) {}^{2}

 \rm \:  {x}^{4}  +  \frac{1}{ x{}^{4} }  + 2 = 729

 \rm \:  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 729 - 2

 \boxed{ \rm \:  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 727}

Similar questions