Math, asked by bratamay, 5 months ago

If x + 1/x =5, find value of x^4 +1/x^4

Answers

Answered by bhumikakhandelwalvis
2

Answer:

257

Step-by-step explanation:

x+1=5x

1/4=X

(1/4)^4+1/(1/4)^4

1/256+1/1/256

257/256×256

257

Answered by Anonymous
65

Given :-

  • x + 1/x = 5

To find :-

  • x⁴ + 1/x⁴

Solution :-

  • Here, we are given x + 1/x = 5

Identity used :-

  • (a + b)² = a² + b² + 2ab

\qquad\small\underline{\pmb{\sf \:Squaring \: both\:  sides:-}}

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{   (x +\dfrac{1}{x } )² = (5)²  }}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{   x² +  \dfrac{1}{x²} + 2 \times  x \times \dfrac{1}{x }= 25  }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{   x² +  \dfrac{1}{x²} + 2 = 25  }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{   x² + \dfrac{1}{x²}= 25 - 2  }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{  x² +\dfrac{1}{x²} = 23  }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{   \big(x² + \dfrac{1}{x²}\big )² = (23)²  }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{   (x²)² + (\dfrac{1}{x})² + 2 \times  x² \times  \dfrac{1}{x²} = 529  }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{  x⁴ +  \dfrac{ 1}{x⁴ } + 2 = 529  }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{   x⁴ +\dfrac{ 1}{x⁴ }  = 529 - 2  }}\\

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{   x⁴ +\dfrac{ 1}{x⁴ }= 527  }}}\\

  • The value of x⁴ + 1/x⁴ is 527

⠀⠀⠀⠀¯‎¯‎‎‎¯‎¯¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎‎¯‎‎¯‎‎‎¯‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎¯‎‎¯‎¯¯‎¯‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎

Similar questions