Math, asked by yash1234pcnpi0, 1 year ago

if x+1/x=5 find x3-1/x3

Answers

Answered by mysticd
61

Answer:

 \red {x^{3} - \frac{1}{x^{3}} } \green { = 24\sqrt{21} }

Step-by-step explanation:

 Given \: x + \frac{1}{x} = 5 \: ---(1)

 \left( x - \frac{1}{x} \right)^{2} = \left( x + \frac{1}{x} \right)^{2} - 4

 = 5^{2} - 4 \: [ From \: (1) ]

 = 25 - 4 \\= 21

 \left( x - \frac{1}{x} \right) = \sqrt{ 21} \: ---(2)

 x^{3} - \frac{1}{x^{3}} = \left( x - \frac{1}{x}\right)^{3} + 3\left( x - \frac{1}{x}\right)

 \boxed { \pink { a^{3} - b^{3} = (a - b)^{3} + 3ab(a-b) }}

 = ( \sqrt{21} )^{3} + 3\sqrt{21} \: [From \: (2) ]

 = 21\sqrt{21} + 3\sqrt{21} \\= 24\sqrt{21}

Therefore.,

 \red {x^{3} - \frac{1}{x^{3}} } \green { = 24\sqrt{21} }

•••♪

Similar questions
Math, 7 months ago