Math, asked by sachindevramkrishn20, 6 months ago


if x+1/x=5 find x4+1/ x4​

Answers

Answered by patradebashish575
1

Answer:

20

Step-by-step explanation:

It is helpful for you

Mark me brainliest

Answered by Flaunt
69

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

if x+1/x=5 find x4+1/ x4

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}

┏━━━━━━━━━━━━━━━━━━━━━━━┓

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ✍️

Formula:

\bold{\boxed{ {(x + y)}^{4}  =  {x}^{4}  + 4 {x}^{3}  y + 6 {x}^{2}  {y}^{2}  + 4x {y}^{3}  +  {y}^{4}}}

 =  >  {x}^{4}  + 4 {\cancel{{x}^{3} }} \times  \frac{1}{\cancel{{x}  }}+ 6 {\cancel{{x}^{2} }} \times  \frac{1}{ {\cancel{{x}^{2} }}}  + 4{\cancel{x}} \times  \frac{1}{{\cancel{ {x}^{3} }}}  +  { (\frac{1}{x}) }^{4}  = 625

 =  >  {x}^{4}  + 4 {\cancel{{x}^{2}}}  + 6 +  \frac{4}{{\cancel{ {x}^{2} }}}  +  \frac{1}{ {x}^{4} }  = 625

 =  >  {x}^{4}  + 10 + 4 +  \frac{1}{ {x}^{4} }  = 625

 =  >  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 14 = 625

 =  >  {x}^{4}  +  \frac{1}{ {x}^{4} } = 611

\huge\mathcal{Learn\:more:}

\bold{\boxed{ {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  +3xy(x+y)}}

\bold{\boxed{ {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  +2xy}}

┗━━━━━━━━━━━━━━━━━━━━━━━┛

Similar questions