Math, asked by vasant96, 3 months ago

if x-1/x=5 ,the value of x^3 -1/x^3 is​

Answers

Answered by Anonymous
9

\bf Given

\tt\to x-\dfrac{1}{x}=5

\bf To\:\:Find

\tt\to x^{3} -\dfrac{1}{x^3}

\bf Using\:\:\:This\:\:\: Formula

\tt\to( a - b)^3= a^3-b^3-3ab(a-b)

\bf Cube \:\:on\:\: both\:Side

\tt\to \bigg(x-\dfrac{1}{x}\bigg)^3=5^3

\tt\to x^3-\dfrac{1}{x^3}-3\times x\times \dfrac{1}{x} \bigg( x - \dfrac{1}{x}\bigg)=125

\tt\to x^3-\dfrac{1}{x^3} -3(5) = 125

\tt\to x^3-\dfrac{1}{x^3} -15 = 125

\tt\to x^3-\dfrac{1}{x^3} = 125 +15

\tt\to x^3-\dfrac{1}{x^3} = 140

\bf Answer

\tt\to x^3-\dfrac{1}{x^3} = 140

Answered by BrainlyYuVa
23

Solution

Given :-

  • x - 1/x = 5 ____________(1)

Find :-

  • x³ - 1/x³ = ?

Explanation

Using Formula

(a + b)² = + + 2ab

(a³ - ) = (a - b)( + ab + )

Now, squaring both side of equ(1)

==> (x - 1/x)² = 5²

==> x² + 1/x² - 2 × x × 1/x = 25

==> x² + 1/x² - 2 = 25

==> x² + 1/x² = 25 + 2

==> x² + 1/x² = 27________________(2)

Now, calculate

==> x³ - 1/x³ = ( x - 1/x)(x² + 1/x² + 1)

==> keep Value by equ (1) & (2)

==> x³ - 1/x³ = 5 × (27 + 1)

==> x³ - 1/x³ = 5 × 28

==> x³ - 1/x³ = 140

Hence

  • Value will be x³ - 1/x³ = 140

____________________

Similar questions