Math, asked by shreedatri2005, 1 year ago

if x+ 1/x = 5, then find the value of x³+1/x³

Answers

Answered by ashishks1912
2

GIVEN :

If x+\frac{1}{x}=5, then find the value of x^3+\frac{1}{x^3}

TO FIND :

The value of  x^3+\frac{1}{x^3}

SOLUTION :

Given that the value of x+\frac{1}{x}=5

Now solving x+\frac{1}{x}=5

Cubing on both sides,

(x+\frac{1}{x})^3=5^3

(x +\frac{1}{x})^3=x^3+(\frac{1}{x})^3+3x^2(\frac{1}{x})^2+3x(\frac{1}{x})^2

By using the Algebraic identity :

 ( a + b )^3=a^3+ b^3 + 3a^2b+3ab^2

Here the values are a = x and b=\frac{1}{x}

(x +\frac{1}{x})^3=x^3+(\frac{1}{x})^3+3x+3(\frac{1}{x})

(x +\frac{1}{x})^3=x^3+(\frac{1}{x})^3+3(x+\frac{1}{x})

Substitute the value of x+\frac{1}{x}=5 in the above equation we have,

(5)^3=x^3+(\frac{1}{x})^3+3(5)

125=x^3+\frac{1}{x^3}+15

125-15=x^3+\frac{1}{x^3}

Rewritting the above equation we have that,

x^3+\frac{1}{x^3}=125-15

x^3+\frac{1}{x^3}=110

∴ the value of x^3+\frac{1}{x^3} is 110.

x^3+\frac{1}{x^3}=110

Similar questions