Math, asked by anshumansingh994, 1 month ago

If x-1/x=√5 then find the value of x³+1/x³ please help​

Answers

Answered by Barani22
0

Answer:

.

Step-by-step explanation:

Given -

x + 1/x = 5

To Find -

Value of x³ + 1/x³

Now,

→ x + 1/x = 5

Cubing both sides :-

→ (x + 1/x)³ = (5)³

→ x³ + 1/x³ + 3x²/x + 3x/x² = 125

→ x³ + 1/x³ = 125 - 3x - 3/x

→ x³ + 1/x³ = 125 - 3(x + 1/x)

→ x³ + 1/x³ = 125 - 3(5)

→ x³ + 1/x³ = 125 - 15

→ x³ + 1/x³ = 110

Hence,

The value of x³ + 1/x³ is 110

Answered by FiercePrince
13

\maltese \:\:\underline {\pmb{\bf Given }}\:\::\\

\qquad \star \:\:\underline {\boxed {\pmb{\sf x - \dfrac{1}{x} \:=\:\sqrt{5} \:\:}}}\\\\\qquad\bigstar \:\:\underline{\pmb{\sf By \:\:\:Squaring\:\: \:both\:\: \:sides\:\: \:}}\\\\

 \qquad :\implies \sf x - \dfrac{1}{x} \:=\:\sqrt{5} \\\\\\ \qquad :\implies \sf \bigg( x -  \dfrac{1}{x} \bigg)^2 \:=\:\big( \sqrt{5}\big)^2 \:\:\\\\\\ \qquad :\implies \sf x^2 + \dfrac{1}{x^2} \:-\:2 \:\bigg( x \:\times \dfrac{1}{x}\bigg) \:\:=\: 5 \\\\\\\qquad :\implies \sf x^2 + \dfrac{1}{x^2} \:-\:2 \: \:\:=\: 5 \\\\\\ \qquad :\implies \sf x^2 + \dfrac{1}{x^2} \:\: \:\:=\: 5 + 2  \\\\\\\qquad :\implies \sf x^2 + \dfrac{1}{x^2} \: \: \:\:=\: 7 \\\\\

Now ,

 \qquad :\implies \sf x^3 + \dfrac{1}{x^3}  \\\\\\  \qquad :\implies \sf  \bigg( x - \dfrac{1}{x} \bigg) \bigg[ x^2 + \dfrac{1}{x^2} + \bigg(  x \times \dfrac{1}{x}\bigg) \bigg]   \\\\\\ \qquad :\implies \sf  \bigg( x - \dfrac{1}{x} \bigg) \bigg[ x^2 + \dfrac{1}{x^2} + 1 \bigg]   \\\\\\  \qquad :\implies \sf  \big( \sqrt{5} \big) \big( 7 + 1 \big)   \\\\\\  \qquad :\implies \sf  \big( \sqrt{5} \big) \big( 8 \big)   \\\\\\   \qquad :\implies \sf  x^3 + \dfrac{1}{x^3}   =  8 \sqrt{5}  \\\\\\

Similar questions