If x+1/x=6 find x-1/x, x^2-1/x^2
Answers
Answer:
x - 1 / x = 4√2
x² - 1 / x² = 24√2
Step-by-step explanation:
Given-----> x + 1 / x = 6
To find-----> x - 1 / x , x² - 1 / x²
Solution------> ATQ,
x + 1 / x = 6
Squaring both sides , we get,
=> ( x + 1 / x )² = ( 6 )²
We have an identity,
( a + b )² = a² + b² + 2ab , applying it , we get,
=> x² + 1 / x² + 2 x ( 1 / x ) = 36
=> x² + 1 / x² + 2 = 36
=> x² + 1 / x² = 36 - 2
=> x² + 1 / x² = 34
Now,
( x - 1 / x )² = x² + 1 / x² - 2 ( x ) ( 1 / x )
= ( x² + 1 / x² ) - 2
= ( 34 ) - 2
=> ( x - 1 / x )² = 32
Taking square root of both sides , we get,
=> ( x - 1 / x ) = √32
= √( 16 × 2 )
=> ( x - 1 / x ) = 4 √2
Now,
x² - 1 / x² = ( x )² - ( 1 / x )²
We have an identity ,
( a² - b² ) = ( a + b ) ( a - b ) , applying it we get,
x² - 1 / x² = ( x + 1 / x ) ( x - 1 / x )
= ( 6 ) × ( 4√2 )
= 24√2