Math, asked by anjali3012, 1 year ago

If x+1/x=7 , then find the value of x³+1/x³​

Answers

Answered by TheBossHere
1

Answer:

Step-by-step explanation:

(x+1/x)³=343

x³+1/x³+3(x+1/x)(x×1/x)=343

x³+1/x³+3(x+1/x)=343

Given x+1/x=7.

So x³+1/x³+(3×7)=343

So x³+1/x³+21=343

x³+1/x³​=322

Answered by LovelyG
6

Answer:

322

Step-by-step explanation:

Given that ;

 \sf x +  \dfrac{1}{x}  = 7

On cubing both sides ;

 \sf \left(x +  \frac{1}{x} \right)^3 = (7) {}^{3}  \\  \\ \sf  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \: . \:x  \:.  \:  \frac{1}{x} (x +  \frac{1}{x} ) = 343 \\  \\ \sf  {x}^{3}  +  \frac{1}{ {x}^{3} } + 3(x +  \frac{1}{x} ) = 343 \\  \\ \sf  {x}^{3}  +  \frac{1}{ {x}^{3} } + 3(7) = 343 \\  \\ \sf  {x}^{3}  +  \frac{1}{ {x}^{3} } + 21 = 343 \\  \\ \sf  {x}^{3}  +  \frac{1}{ {x}^{3} } = 343 - 21 \\  \\ \boxed{ \red{ \bf \therefore \:   {x}^{3}  +  \frac{1}{ {x}^{3} } = 322}}

Similar questions