Math, asked by mahisharma2008ks, 4 months ago

If (X+1/X)=√7 then find X²+1/X²and X⁴+1/X⁴​

Answers

Answered by Anonymous
5

Given,

: \implies x +  \frac{1}{x}  =  \sqrt{7}  \\

To Find,

: \implies  {x}^{2}  +  \frac{1}{ {x}^{2} }  =   \: ?

: \implies  {x}^{4}  +  \frac{1}{ {x}^{4} }  =   \: ?

Solution,

: \implies x +  \frac{1}{x}  =  \sqrt{7}    \:  \:  \: ...(Given) \\  \\ : \implies x +  \frac{1}{x}  =  \sqrt{7}  \:  \:  \:  ...(squaring \:  \: both \: \:  side)\\  \\ : \implies {(x +  \frac{1}{x} )}^{2}  =  {( \sqrt{7}) }^{2}  \\  \\ ( {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy) \\  \\ : \implies  {(x)}^{2}  +  {( \frac{1}{x}) }^{2}  + 2(x)( \frac{1}{x} ) = 7 \\  \\ : \implies  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}  = 7 \\  \\ : \implies  {x}^{2}  +  \frac{1}{ {x}^{2} } + 2 = 7 \\  \\ : \implies  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 7 - 2 \\  \\ : \implies  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 5

: \implies  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 5 \\  \\ : \implies  {x}^{2}  +  \frac{1}{ {x}^{2} } = 5 \:  \:  \: ...(squaring \:  \: both \:  \: sides) \\  \\ : \implies{ ( {x}^{2}  +  \frac{1}{ {x}^{2} } )}^{2}  =  {(5)}^{2}  \\  \\( {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy) \\  \\ : \implies  {( {x}^{2}) }^{2}  +  {( \frac{1}{ {x}^{2} }) }^{2}  + 2( {x}^{2} )( \frac{1}{ {x}^{2} } ) = 25 \\  \\ : \implies  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }  = 25 \\  \\ : \implies  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 25 \\  \\ : \implies  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 25 - 2 \\  \\ : \implies  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 23

Required Answer,

x² + 1/x² = 5

x² + 1/x² = 5x⁴ + 1/x⁴ = 23

Similar questions