Math, asked by sonusonugupta53, 1 year ago

if x-1/x=8 then the value of xsq.+1/xsq.​

Answers

Answered by pastimeplays
1

Answer:

66

Step-by-step explanation:

x - \frac{1}{x} = 8

Squaring both sides,

(x - \frac{1}{x} )^{2} = 8^{2}

x^{2}  + \frac{1}{x^{2} } -2(x)(\frac{1}{x} ) = 64

x^{2}  + \frac{1}{x^{2} } -2 = 64

x^{2}  + \frac{1}{x^{2} }  = 66

Hope this answers your question!! :)

Answered by Brâiñlynêha
15

Given :-

x-1/x= 8

To find :-

\sf x{}^{2}+\dfrac{1}{x{}^{2}}=?

identity used

\boxed{\sf{(a-b){}^{2}=a{}^{2}+b{}^{2}-2ab}}

Now

\sf \bigg(x-\dfrac{1}{x}\bigg){}^{2}=x{}^{2}+\dfrac{1}{x{}^{2}}-2\times \cancel{x}\times \dfrac{1}{\cancel{x}}\\ \\ \sf\longrightarrow \bigg(x-\dfrac{1}{x}\bigg){}^{2}=x{}^{2}+\dfrac{1}{x{}^{2}}-2

put the value of x-1/x

\sf\bullet \bigg(x-\dfrac{1}{x}\bigg){}^{2}=x{}^{2}+\dfrac{1}{x{}^{2}}-2\\ \\ \sf\implies (8){}^{2}=x{}^{2}+\dfrac{1}{x{}^{2}}-2\\ \\ \sf\implies 64+2=x{}^{2}+\dfrac{1}{x{}^{2}}\\ \\ \sf\implies 66=x{}^{2}+\dfrac{1}{x{}^{2}}

\boxed{\tt{\blue{x{}^{2}+\dfrac{1}{x{}^{2}}=66}}}

Similar questions