Math, asked by B2F, 2 months ago

If x-1 / x cube = 3 + 2 root2, find the
value of x cube-1/x cube​

Answers

Answered by PopularAnswerer01
50

\huge\sf\underline { Question } :

  • \sf \: If \:  \: {x}^{3}   +  \dfrac{ 1 }{ {x}^{3} } = 3 + 2 \sqrt{2}  \:  \: then \: find \: the  \\   \: \sf value \: of \:   \bigg( x - \dfrac{ 1 }{ x } \bigg )   .

\huge\sf\underline { To Find } :

  • Find the value.

\huge\sf\underline { Solution } :

\longrightarrow\sf \: { \bigg( x - \dfrac{ 1 }{ x } \bigg ) }^{ 3 } = {x}^{3}   +  \dfrac{ 1 }{ {x}^{3} }  -  2 \times x \times  \dfrac{1}{x}

\longrightarrow\sf \: { \bigg( x - \dfrac{ 1 }{ x } \bigg ) }^{ 3 } = 3 + 2 \sqrt{2}  - 2

\longrightarrow\sf { \bigg( x - \dfrac{ 1 }{ x } \bigg ) }^{ 3 } = 1  + 2 \sqrt{2}

\longrightarrow\sf \bigg( x - \dfrac{ 1 }{ x } \bigg ) =  \sqrt{1 + 2 \sqrt{2} }

Similar questions