Math, asked by Anonymous, 10 months ago

if x+1/x is 5 then find the value of x^3+1/x^3​

Answers

Answered by Brâiñlynêha
6

\huge\mathbb{SOLUTION:-}

\boxed{\sf{Formula\:used=(a+b){}^{3}}}

  • Where in the place of a =x

  • And place of b=\sf \frac{1}{x}

Now :-

\tt\implies (x+\frac{1}{x}){}^{3}=x{}^{3}+\frac{1}{x{}^{3}}+3\times \cancel{x}\times \frac{1}{\cancel{x}} (x+\frac{1}{x})\\ \\ \tt\implies [x+\frac{1}{x}]{}^{3}=x{}^{3}+\frac{1}{x{}^{3}}+3(x+\frac{1}{x})

\bf\underline{According\:To\: Question:-}

\sf\implies [x+\frac{1}{x}]{}^{3}=x{}^{3}+\frac{1}{x{}^{3}}+3(x+\frac{1}{x})\\ \\ \sf\implies (5){}^{3}=x{}^{3}+\frac{1}{x{}^{3}}+3\times 5\\ \\ \sf\implies 125=x{}^{3}+\frac{1}{x{}^{3}}+15\\ \\ \sf\implies 125-15=x{}^{3}+\frac{1}{x{}^{3}}\\ \\ \sf\implies x{}^{3}+\frac{1}{x{}^{3}}=110

\underline{\boxed{\mathfrak{x{}^{3}+\frac{1}{x{}^{3}}=110}}}

Similar questions