If x+1/x = root 7 then find x^3 + 1/x^3
Answers
Step-by-step explanation:
Given -
◕ x + 1/x = √7
To Find -
➳ Value of x³ + 1/x³
Now,
⇝x + 1/x = √7
Cubing both sides :-
⇝ (x + 1/x)³ = (√7)³
⇝ x³ + 1/x³ + 3x²/x + 3x/x² = 7√7
⇝ x³ + 1/x³ + 3x + 3/x = 7√7
⇝ x³ + 1/x³ + 3(x + 1/x) = 7√7
⇝ x³ + 1/x³ = 7√7 - 3(x + 1/x)
⇝ x³ + 1/x³ = 7√7 - 3(√7)
⇝ x³ + 1/x³ = 7√7 - 3√7
⇝ x³ + 1/x³ = 4√7
Hence,
The value of x³ + 1/x³ is 4√7.
Hey GUYS. .
Hope you like this ANSWER.
Step-by-step..
Given -
◕ x + 1/x = √7
To Find -
➳ Value of x³ + 1/x³
Now,
⇝x + 1/x = √7
Cubing both sides :-
⇝ (x + 1/x)³ = (√7)³
⇝ x³ + 1/x³ + 3x²/x + 3x/x² = 7√7
⇝ x³ + 1/x³ + 3x + 3/x = 7√7
⇝ x³ + 1/x³ + 3(x + 1/x) = 7√7
⇝ x³ + 1/x³ = 7√7 - 3(x + 1/x)
⇝ x³ + 1/x³ = 7√7 - 3(√7)
⇝ x³ + 1/x³ = 7√7 - 3√7
⇝ x³ + 1/x³ = 4√7
Hence,
The value of x³ + 1/x³ is 4√7....
Thanks for this question.