If x√1+y+y√1+x=0,then dy\dx is equal to
Answers
Answer:
Step-by-step explanation:
Given that,
On squaring both sides, we get
On differentiating both sides w. r. t. x, we get
Formulae used:
Answer:
Given that,
\begin{gathered}\sf \: x \sqrt{1 + y} + y \sqrt{1 + x} = 0 \\ \\ \end{gathered}
x
1+y
+y
1+x
=0
\begin{gathered}\sf \: x \sqrt{1 + y} = - y \sqrt{1 + x} \\ \\ \end{gathered}
x
1+y
=−y
1+x
On squaring both sides, we get
\begin{gathered}\sf \: (x \sqrt{1 + y})^{2} = (- y \sqrt{1 + x})^{2} \\ \\ \end{gathered}
(x
1+y
)
2
=(−y
1+x
)
2
\begin{gathered}\sf \: {x}^{2}(1 + y) = {y}^{2}(1 + x) \\ \\ \end{gathered}
x
2
(1+y)=y
2
(1+x)
\begin{gathered}\sf \: {x}^{2} + y {x}^{2} = {y}^{2} + x {y}^{2} \\ \\ \end{gathered}
x
2
+yx
2
=y
2
+xy
2
\begin{gathered}\sf \: {x}^{2} - {y}^{2} = x {y}^{2} - {x}^{2}y \\ \\ \end{gathered}
x
2
−y
2
=xy
2
−x
2
y
\begin{gathered}\sf \: (x + y)(x - y)= xy(y - x) \\ \\ \end{gathered}
(x+y)(x−y)=xy(y−x)
\begin{gathered}\sf \: (x + y)(x - y)= - xy(x - y) \\ \\ \end{gathered}
(x+y)(x−y)=−xy(x−y)
\begin{gathered}\sf \: x + y= - xy \\ \\ \end{gathered}
x+y=−xy
\begin{gathered}\sf \: x= - xy - y \\ \\ \end{gathered}
x=−xy−y
\begin{gathered}\sf \: x= - y(x + 1) \\ \\ \end{gathered}
x=−y(x+1)
\begin{gathered}\sf \: y = - \: \dfrac{x}{x + 1} \\ \\ \end{gathered}
y=−
x+1
x
On differentiating both sides w. r. t. x, we get
\begin{gathered}\sf \: \dfrac{d}{dx} y =\dfrac{d}{dx}\left( \dfrac{ - x}{x + 1}\right) \\ \\ \end{gathered}
dx
d
y=
dx
d
(
x+1
−x
)
\begin{gathered}\sf \: \dfrac{dy}{dx} = \dfrac{(x + 1)\dfrac{d}{dx}( - x) - ( - x)\dfrac{d}{dx}(x + 1)}{ {(x + 1)}^{2} } \\ \\ \end{gathered}
dx
dy
=
(x+1)
2
(x+1)
dx
d
(−x)−(−x)
dx
d
(x+1)
\begin{gathered}\sf \: \dfrac{dy}{dx} = \dfrac{(x + 1)( - 1) + x(1 + 0)}{ {(x + 1)}^{2} } \\ \\ \end{gathered}
dx
dy
=
(x+1)
2
(x+1)(−1)+x(1+0)
\begin{gathered}\sf \: \dfrac{dy}{dx} = \dfrac{ - x - 1 + x}{ {(x + 1)}^{2} } \\ \\ \end{gathered}
dx
dy
=
(x+1)
2
−x−1+x
\begin{gathered}\implies\sf \: \sf \: \dfrac{dy}{dx} = \dfrac{ - 1}{ {(x + 1)}^{2} } \\ \\ \end{gathered}
⟹
dx
dy
=
(x+1)
2
−1
\rule{190pt}{2pt}