Math, asked by sakshisharma4600, 3 months ago

if x√1+y + y√1+x = 0
then find (1+x)² dy/dx​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

x \sqrt{1 + y}  + y  \sqrt{1 + x}  = 0

 \implies \: x \sqrt{1 + y}   =  - y  \sqrt{1 + x}

 \implies \:  \frac{ \sqrt{y + 1}}{ \sqrt{x + 1} }   =  -  \frac{y}{x} \\

 \implies \: \bigg(  \frac{ \sqrt{y + 1}}{ \sqrt{x + 1} }  \bigg)^{2}   =   \bigg(-  \frac{y}{x} \bigg)^{2}  \\

 \implies \:  \frac{ y + 1}{x + 1 }   =  \frac{y ^{2} }{x^{2} } \\

 \implies \:   ({x}^{2}) y +  {x}^{2}  = x  ({y}^{2} )+  {y}^{2}   \\

Differentiating both sides w.r.t x,

 \implies \:   2x y  +  {x}^{2}  \frac{dy}{dx} +  2x = {y}^{2}  + 2xy \frac{dy}{dx} +  2y  \frac{dy}{dx}   \\

 \implies \:    ({x}^{2} - 2xy - 2y)  \frac{dy}{dx} = {y}^{2}   - 2xy - 2x  \\

 \implies \:     \frac{dy}{dx} =  \frac{{y}^{2}   - 2xy - 2x }{  {x}^{2} - 2xy - 2y } \\

Answered by mathdude500
5

Answer:

\boxed{\sf \: \sf \: (1+x)^2\dfrac{dy}{dx} =  \: - \:  1 \: }\\  \\

Step-by-step explanation:

Given that,

\sf \: x \sqrt{1 + y}  + y \sqrt{1 + x}  = 0 \\  \\

\sf \: x \sqrt{1 + y} =  -  y \sqrt{1 + x} \\  \\

On squaring both sides, we get

\sf \: (x \sqrt{1 + y})^{2}  =  (-  y \sqrt{1 + x})^{2}  \\  \\

\sf \:  {x}^{2}(1 + y) =  {y}^{2}(1 + x) \\  \\

\sf \:  {x}^{2} + y {x}^{2}  =  {y}^{2} + x {y}^{2}  \\  \\

\sf \:  {x}^{2} - {y}^{2}  =  x {y}^{2} -  {x}^{2}y   \\  \\

\sf \:  (x + y)(x - y)= xy(y - x)   \\  \\

\sf \:  (x + y)(x - y)=  - xy(x - y)   \\  \\

\sf \: x + y=  - xy   \\  \\

\sf \: x=  - xy - y   \\  \\

\sf \: x=   - y(x + 1)   \\  \\

\sf \: y =  -  \: \dfrac{x}{x + 1}  \\  \\

On differentiating both sides w. r. t. x, we get

\sf \: \dfrac{d}{dx} y =\dfrac{d}{dx}\left( \dfrac{ - x}{x + 1}\right)  \\  \\

\sf \: \dfrac{dy}{dx} = \dfrac{(x + 1)\dfrac{d}{dx}( - x) - ( - x)\dfrac{d}{dx}(x + 1)}{ {(x + 1)}^{2} }  \\  \\

\sf \: \dfrac{dy}{dx} = \dfrac{(x + 1)( - 1)  + x(1 + 0)}{ {(x + 1)}^{2} }  \\  \\

\sf \: \dfrac{dy}{dx} = \dfrac{ - x - 1  + x}{ {(x + 1)}^{2} }  \\  \\

\implies\sf \: \sf \: (1+x)^2\dfrac{dy}{dx} = - 1  \\  \\

\rule{190pt}{2pt}

Formulae used:

\sf \: \dfrac{d}{dx}\dfrac{u}{v}  = \dfrac{u\dfrac{d}{dx}v - v\dfrac{d}{dx}u}{ {v}^{2} }  \\  \\

\sf \: \dfrac{d}{dx}x = 1 \\  \\

\sf \: \dfrac{d}{dx}k = 0\\  \\

Similar questions